Human-zebrafish non-coding conserved elements act in vivo to regulate transcription
نویسندگان
چکیده
Whole genome comparisons of distantly related species effectively predict biologically important sequences--core genes and cis-acting regulatory elements (REs)--but require experimentation to verify biological activity. To examine the efficacy of comparative genomics in identification of active REs from anonymous, non-coding (NC) sequences, we generated a novel alignment of the human and draft zebrafish genomes, and contrasted this set to existing human and fugu datasets. We tested the transcriptional regulatory potential of candidate sequences using two in vivo assays. Strict selection of non-genic elements which are deeply conserved in vertebrate evolution identifies 1744 core vertebrate REs in human and two fish genomes. We tested 16 elements in vivo for cis-acting gene regulatory properties using zebrafish transient transgenesis and found that 10 (63%) strongly modulate tissue-specific expression of a green fluorescent protein reporter vector. We also report a novel quantitative enhancer assay with potential for increased throughput based on normalized luciferase activity in vivo. This complementary system identified 11 (69%; including 9 of 10 GFP-confirmed elements) with cis-acting function. Together, these data support the utility of comparative genomics of distantly related vertebrate species to identify REs and provide a scaleable, in vivo quantitative assay to define functional activity of candidate REs.
منابع مشابه
Conserved Noncoding Sequences Regulate lhx5 Expression in the Zebrafish Forebrain
The LIM homeobox family protein Lhx5 plays important roles in forebrain development in the vertebrates. The lhx5 gene exhibits complex temporal and spatial expression patterns during early development but its transcriptional regulation mechanisms are not well understood. Here, we have used transgenesis in zebrafish in order to define regulatory elements that drive lhx5 expression in the forebra...
متن کاملHighly Conserved Non-Coding Sequences Are Associated with Vertebrate Development
In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both simila...
متن کاملHuman GLI3 Intragenic Conserved Non-Coding Sequences Are Tissue-Specific Enhancers
The zinc-finger transcription factor GLI3 is a key regulator of development, acting as a primary transducer of Sonic hedgehog (SHH) signaling in a combinatorial context dependent fashion controlling multiple patterning steps in different tissues/organs. A tight temporal and spatial control of gene expression is indispensable, however, cis-acting sequence elements regulating GLI3 expression have...
متن کاملIdentification and Analysis of Conserved cis-Regulatory Regions of the MEIS1 Gene
Meis1, a conserved transcription factor of the TALE-homeodomain class, is expressed in a wide variety of tissues during development. Its complex expression pattern is likely to be controlled by an equally complex regulatory landscape. Here we have scanned the Meis1 locus for regulatory elements and found 13 non-coding regions, highly conserved between humans and teleost fishes, that have enhanc...
متن کاملMosaic zebrafish transgenesis for evaluating enhancer sequences.
The completion of the human genome sequence, along with that of many other species, has highlighted the challenge of ascribing specific function to non coding sequences. One prominent function carried out by the non coding fraction of the genome is to regulate gene transcription; however, there are no effective methods to broadly predict cis-regulatory elements from primary DNA sequence. We hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005